Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.967
Filtrar
1.
Mol Cell Probes ; 74: 101953, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432490

RESUMEN

INTRODUCTION: Estrogen hormones and their metabolites are implicated in the maintenance of healthy pregnancy and adequate fetal development. Abnormal levels were related to increased risk of pregnancy complications, particularly preeclampsia. Our aims were (1) to develop a methodological platform for the comprehensive assessment of estrogen metabolome in pregnancy; (2) to collect healthy reference data for relevant elements of estrogen metabolome in each trimester; (3) to assess unconjugated fractions of the estrogen metabolome, (4) to assess the dominant metabolic pathways of estrogen compounds. METHODS: We enrolled healthy pregnant mothers between gestational week 5-15 (on the confirmation of pregnancy; 79 samples), gestational weeks 19-27 (70 samples), and gestational week 34-39 (54 samples). A method employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed to assess estrone, 17-beta-estradiol, estriol levels, and their metabolites as conjugated and unconjugated forms. Descriptive statistics were used to characterize the level of compounds in each trimester. RESULTS: Estrone, 17-beta-estradiol and estriol levels are dramatically increasing with the advancement of pregnancy. Measured levels were in a very wide range. 17-beta-estradiol is neither glucuronated nor sulphated. To the contrary, estriol and estrone are significantly conjugated; unconjugated fraction is <15% of total hormone levels in any trimester. Regarding metabolism, 4-methoxy-estradiol and 17-epiestriol were not detected. CONCLUSION: We concluded that (1) the levels of estrogen compounds and metabolites increase with advancing gestational age; (2) the wide ranges of levels challenge the establishment of a healthy reference range for clinical purposes; (3) 17-beta-estradiol is not conjugated significantly; (4) 4-methylation and 17-epimerization pathways of estrogens are negligible with our LC-MS/MS method.


Asunto(s)
Estrona , Espectrometría de Masas en Tándem , Embarazo , Femenino , Humanos , Estrona/metabolismo , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Estrógenos/análisis , Estrógenos/metabolismo , Estradiol/metabolismo , Estriol , Metaboloma
2.
Chemosphere ; 355: 141727, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499076

RESUMEN

Growing focus has been drawn to the continuous detection of high estrogens levels in the soil environment. Additionally, microplastics (MPs) are also of growing concern worldwide, which may affect the environmental behavior of estrogens. However, little is known about effects of MPs occurrence on estrogens degradation in soil. In this study, polyethylene microplastics (PE-MPs) were chosen to examine the influence on six common estrogens (estrone (E1), 17α-estradiol (17α-E2), 17ß-estradiol (17ß-E2), estriol (E3), diethylstilbestrol (DES), and 17α-ethinylestradiol (17α-EE2)) degradation. The results indicated that PE-MPs had little effect on the degradation of E3 and DES, and slightly affected the degradation of 17α-E2, however, significantly inhibited the degradation of E1, 17α-EE2, and 17ß-E2. It was explained that (i) obvious oxidation reaction occurred on the surface of PE-MPs, indicating that PE-MPs might compete with estrogens for oxidation sites, such as redox and biological oxidation; (ii) PE-MPs significantly changed the bacterial community in soil, resulting in a decline in the abundance of some bacterial communities that biodegraded estrogens. Moreover, the rough surface of PE-MPs facilitated the estrogen-degrading bacterial species (especially for E1, E2, and EE2) to adhere, which decreased their reaction to estrogens. These findings are expected to deepen the understanding of the environmental behavior of typical estrogens in the coexisting system of MPs.


Asunto(s)
Microplásticos , Plásticos , Polietileno , Suelo , Estradiol/metabolismo , Estrógenos , Estrona/metabolismo , Etinilestradiol/metabolismo
3.
J Pharm Sci ; 113(5): 1376-1384, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432624

RESUMEN

Organic anion transporting polypeptide (OATP)1A2 and OATP2B1 have potential N-glycosylation sites, but their influence remains unclear. This study aimed to identify the N-glycosylation sites of OATP1A2/2B1 and investigate their impact on the expression and function of OATP1A2/2B1. Human embryonic kidney cells expressing OATP1A2 or OATP2B1 (HEK293-OATP1A2/2B1) were exposed to tunicamycin, an N-glycosylation inhibitor, and a plasma membrane fraction (PMF) Western blot assay and an estrone 3-sulfate (E3S) uptake study were conducted. HEK293-OATP1A2/OATP2B1 cell lines with mutation(s) at potential N-glycosylation sites were established, and the Western blotting and uptake study were repeated. Tunicamycin reduced the PMF levels and E3S uptake of OATP1A2/OATP2B1. The Asn124Gln, Asn135Gln, and Asn492Gln mutations in OATP1A2 and Asn176Gln and Asn538Gln mutations in OATP2B1 reduced the molecular weights of the OATP molecules and their PMF levels. The PMF levels of OATP1A2 Asn124/135Gln, OATP1A2 Asn124/135/492Gln, and OATP2B1 Asn176/538Gln were further reduced. The maximum transport velocities of OATP1A2 Asn124Gln, OATP1A2 Asn135Gln, and OATP2B1 Asn176/538Gln were markedly reduced to 10 %, 4 %, and 10 % of the wild-type level, respectively. In conclusion, the N-glycans at Asn124 and Asn135 of OATP1A2 and those at Asn176 and Asn538 of OATP2B1 are essential for the plasma membrane expression of these molecules and also affect their transport function.


Asunto(s)
Transportadores de Anión Orgánico , Humanos , Transporte Biológico , Estrona/metabolismo , Glicosilación , Células HEK293 , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Tunicamicina/metabolismo
4.
J Hazard Mater ; 465: 133045, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38016312

RESUMEN

Various persistent organic pollutants (POPs) including estrogens are often enriched in mangrove regions. This research investigated the estrogens pollution levels in six mangroves located in the Southern China. The estrogen levels were found to be in the range of 5.3-24.9 ng/g dry weight, suggesting that these mangroves had been seriously contaminated. The bacterial communities under estrogen stress were further enriched by supplementing 17ß-estradiol (E2) as the sole carbon source. The enriched bacterial communities showed an excellent E2 degradation capacity > 95 %. These communities were able to transform E2 into estrone (E1), 4-hydroxy-estrone, and keto-estrone, etc. 16 S rDNA sequencing and metagenomics analysis revealed that bacterial taxa Oleiagrimonas, Pseudomonas, Terrimonas, and Nitratireductor etc. were the main contributors to estrogen degradation. Moreover, the genes involved in E2 degradation were enriched in the microbial communities, including the genes encoding 17ß-hydroxysteroid dehydrogenase, estrone 4-hydroxylase, etc. Finally, the analyses of functional genes and binning genomes demonstrated that E2 was degraded by bacterial communities via dehydrogenation into E1 by 17ß-hydroxysteroid dehydrogenase. E1 was then catabolically converted to 3aα-H-4α(3'-propanoate)- 7aß-methylhexahydro-1,5-indanedione via 4,5-seco pathway. Alternatively, E1 could also be hydroxylated to keto-estrone, followed by B-ring cleavage. This study provides novel insights into the biodegradation of E2 by the bacterial communities in estrogen-contaminated mangroves.


Asunto(s)
Estradiol , Estrona , Estrona/metabolismo , Estradiol/metabolismo , Estrógenos/análisis , Biodegradación Ambiental , Bacterias/metabolismo
5.
Methods Enzymol ; 689: 201-234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37802571

RESUMEN

The 17ß-hydroxysteroid dehydrogenase type 1 (HSD17B1) has a key role in estrogen biosynthesis as it catalyzes the reduction of estrone to the most potent estrogen, estradiol. Estradiol has a high affinity for estrogen receptors and thus stimulates their transactivation, which leads to cell proliferation and numerous other effects. HSD17B2 catalyzes the oxidation of estradiol to the less potent estrone, thereby decreasing estrogen receptor activation, which results in reduction of estrogen-associated effects. HSD17B1 and HSD17B2 overexpressing E.coli homogenates or recombinant enzymes can be used for screening and development of drugs against various pathologies such as cancer, endometriosis or osteoporosis. Here we describe the preparation of HSD17B1 and HSD17B2 bacterial homogenates and purified recombinant HSD17B1 protein as enzyme sources as well as enzymatic assays based on radiometric and mass-spectrometric detection for enzyme characterization.


Asunto(s)
Estrógenos , Estrona , Femenino , Humanos , Estrona/metabolismo , Estrógenos/metabolismo , Estradiol/metabolismo , Pruebas de Enzimas
6.
Methods Enzymol ; 689: 67-86, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37802583

RESUMEN

Cytochrome P450 aromatase (AROM) and steroid (estrone (E1)/dehydroepiandrosterone (DHEA)) sulfatase (STS) are the two key enzymes responsible for the biosynthesis of estrogens in human, and maintenance of the critical balance between androgens and estrogens. Human AROM, an integral membrane protein of the endoplasmic reticulum, is a member of the Fe-heme containing cytochrome P450 superfamily having a cysteine thiolate as the fifth Fe-coordinating ligand. It is the only enzyme known to catalyze the conversion of androgens with non-aromatic A-rings to estrogens characterized by the aromatic A-ring. Human STS, also an integral membrane protein of the endoplasmic reticulum, is a Ca2+-dependent enzyme that catalyzes the hydrolysis of sulfate esters of E1 and DHEA to yield the respective unconjugated steroids, the precursors of the most potent forms of estrogens and androgens, namely, 17ß-estradiol (E2), 16α,17ß-estriol (E3), testosterone (TST) and dihydrotestosterone (DHT). Expression of these steroidogenic enzymes locally within various organs and tissues of the endocrine, reproductive, and central nervous systems is the key for maintaining high levels of the reproductive steroids. Thus, the enzymes have been drug targets for the prevention and treatment of diseases associated with steroid hormone excesses, especially in breast and prostate malignancies and endometriosis. Both AROM and STS have been the subjects of vigorous research for the past six decades. In this article, we review the procedures of their extraction and purification from human term placenta are described in detail, along with the activity assays.


Asunto(s)
Aromatasa , Esteril-Sulfatasa , Femenino , Humanos , Embarazo , Andrógenos/metabolismo , Aromatasa/metabolismo , Deshidroepiandrosterona/metabolismo , Estrógenos/metabolismo , Estrona/metabolismo , Proteínas de la Membrana/metabolismo , Placenta/metabolismo , Esteril-Sulfatasa/metabolismo
7.
J Environ Manage ; 348: 119392, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37879179

RESUMEN

With the development of livestock industry, contaminants such as divalent zinc ions (Zn (Ⅱ)) and estrone are often simultaneously detected in livestock wastewater. Nevertheless, the combined toxicity of these two pollutants on microalgae is still unclear. Moreover, microalgae have the potential for biosorption and bioaccumulation of heavy metals and organic compounds. Thus, this study investigated the joint effects of Zn (Ⅱ) and estrone on microalgae Chlorella sorokiniana, in terms of growth, photosynthetic activity and biomolecules, as well as pollutants removal by algae. Interestingly, a low Zn (Ⅱ) concentration promoted C. sorokiniana growth and photosynthetic activity, while the high concentration experienced inhibition. As the increase of estrone concentration, chlorophyll a content increased continuously to resist the environmental stress. Concurrently, the secretion of extracellular polysaccharides and proteins by algae increased with exposure to Zn (Ⅱ) and estrone, reducing toxicity of pollutants to microalgae. Reactive oxygen species and superoxide dismutase activity increased as the increase of pollutant concentration after 96 h cultivation, but high pollutant concentrations resulted in damage of cells, as proved by increased MDA content. Additionally, C. sorokiniana displayed remarkable removal efficiency for Zn (Ⅱ) and estrone, reaching up to 86.14% and 84.96% respectively. The study provides insights into the biochemical responses of microalgae to pollutants and highlights the potential of microalgae in pollutants removal.


Asunto(s)
Chlorella , Contaminantes Ambientales , Microalgas , Estrona/metabolismo , Estrona/farmacología , Microalgas/metabolismo , Clorofila A/metabolismo , Clorofila A/farmacología , Zinc , Agua Dulce , Contaminantes Ambientales/metabolismo , Biomasa
8.
Chemosphere ; 343: 140271, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37758070

RESUMEN

Avobenzone and homosalate are widely used in sunscreens to provide ultraviolet (UV) protection, either as single compounds or in combination. Some UV filters exhibit estrogenic or anti-androgenic activities, however, studies regarding their interactions and toxicity in mixtures are limited. In this study, the effect of the toxicity of a binary mixture comprising avobenzone (0.72 µg L-1) and homosalate (1.02 and 103 µg L-1) on steroid hormone biosynthesis were investigated using male zebrafish and human adrenocortical carcinoma (H295R) cells. In fish exposed to homosalate, a significant decrease in the gonadosomatic index, testosterone level, and transcription of several genes (e.g, hsd3b2, cyp17a1, and hsd17b1) and a significant increase in the hepatosomatic index, liver steatosis, 17ß-estradiol level, and transcription of vtg gene were observed. These results suggest that estrogenic and anti-androgenic effects of homosalate were mediated by the steroidogenic pathway. The presence of 0.72 µg L-1 of avobenzone augmented the anti-androgenic responses in male fish. The testosterone level in the H295R cells were significantly decreased after they were exposed to homosalate alone or in combination with avobenzone, which is consistent with observations in male zebrafish. Further studies need to be conducted to understand the endocrine disrupting properties of long-term exposure to substances typically used in sunscreens.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Animales , Masculino , Humanos , Pez Cebra/metabolismo , Protectores Solares/toxicidad , Protectores Solares/metabolismo , Estrona/metabolismo , Antagonistas de Andrógenos , Testosterona/metabolismo , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/metabolismo , Contaminantes Químicos del Agua/toxicidad
9.
J Environ Manage ; 345: 118666, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506444

RESUMEN

The conjugated steroid estrogens (CSEs), including estrone sulfate sodium (E1-3 S) and 17ß-estradiol-3-O-sulfate sodium (E2-3 S), exhibit distinct metabolic behaviors in the aqueous and soil environments. However, their assimilation behaviors and metabolite formations in plant bodies (shoots and roots) remain poorly understood. Therefore, this study used a modified plant hydroponic system to explore the efficiency with which wheat (Triticum acstivnm L.) assimilated the two estrogen conjugates, E1-3 S and E2-3 S. Results indicated the potential of wheat to absorb E1-3 S and E2-3 S, with their assimilation in the root being significantly higher (104-105 ng/g dw) than in the shoot (103-104 ng/g dw). E1-3 S de-sulfated and transformed to estrone (E1) at a rate of 4%-45% in the root's oxidative environment, whereas E2-3 S converted to E1-3 S at 210%-570%. However, the root-to-shoot transfer was impeded by a less potent metabolic activity within the shoot system. The co-exposure treatment revealed that E1 or 17ß-estradiol (E2) affects the assimilation of E1-3 S and E2-3 S by wheat, with E1 inhibiting E1-3 S assimilation and E2 promoting E2-3 S assimilation in wheat bodies. Nonetheless, free-form steroid estrogens (FSEs), which typically have a significant hormone action, can oxidative-damage the wheat tissues, producing a progressive wilting of wheat leaf and so limiting the transpiration process. Co-exposure initially increased the assimilation amounts of E1-3 S (particularly in shoots) and E2-3 S (in both roots and shoots), but these values rapidly declined as exposure duration increased. The combined effects of E1-3 S and E2-3 S exposure also increased their assimilation. These findings suggest the need for further investigation into the cumulative impact of environmental estrogen contaminants. The findings of present study can potentially guide the development of strategies to prevent and manage steroid estrogen contamination in agricultural contexts.


Asunto(s)
Estrona , Triticum , Estrona/metabolismo , Triticum/metabolismo , Estradiol/metabolismo , Estrógenos/metabolismo
10.
Sci Total Environ ; 896: 165152, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37391160

RESUMEN

Steroidal estrogens are ubiquitous contaminants that have garnered attention worldwide due to their endocrine-disrupting and carcinogenic activities at sub-nanomolar concentrations. Microbial degradation is one of the main mechanisms through which estrogens can be removed from the environment. Numerous bacteria have been isolated and identified as estrogen degraders; however, little is known about their contribution to environmental estrogen removal. Here, our global metagenomic analysis indicated that estrogen degradation genes are widely distributed among bacteria, especially among aquatic actinobacterial and proteobacterial species. Thus, by using the Rhodococcus sp. strain B50 as the model organism, we identified three actinobacteria-specific estrogen degradation genes, namely aedGHJ, by performing gene disruption experiments and metabolite profile analysis. Among these genes, the product of aedJ was discovered to mediate the conjugation of coenzyme A with a unique actinobacterial C17 estrogenic metabolite, 5-oxo-4-norestrogenic acid. However, proteobacteria were found to exclusively adopt an α-oxoacid ferredoxin oxidoreductase (i.e., the product of edcC) to degrade a proteobacterial C18 estrogenic metabolite, namely 3-oxo-4,5-seco-estrogenic acid. We employed actinobacterial aedJ and proteobacterial edcC as specific biomarkers for quantitative polymerase chain reaction (qPCR) to elucidate the potential of microbes for estrogen biodegradation in contaminated ecosystems. The results indicated that aedJ was more abundant than edcC in most environmental samples. Our results greatly expand the understanding of environmental estrogen degradation. Moreover, our study suggests that qPCR-based functional assays are a simple, cost-effective, and rapid approach for holistically evaluating estrogen biodegradation in the environment.


Asunto(s)
Ecosistema , Estrógenos , Estrógenos/metabolismo , Estrona/metabolismo , Biodegradación Ambiental , Bacterias/metabolismo , Proteobacteria/genética
11.
World J Microbiol Biotechnol ; 39(8): 218, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37269502

RESUMEN

Owing to the increased population and their overuse, estrogens are being detected in the environment at alarming levels. They act as endocrine disrupting compounds (EDC's) posing adverse effects on animals and humans. In this study, a strain belonging to Enterobacter sp. strain BHUBP7 was recovered from a Sewage Treatment Plant (STP) situated in Varanasi city, U.P., India, and was capable of metabolizing both 17 α-Ethynylestradiol (EE2) and 17 ß-Estradiol (E2) separately as a sole carbon source. The strain BHUBP7 exhibited high rates of E2 degradation as compared to EE2 degradation. The degradation of E2 (10 mg/L) was 94.3% after four days of incubation, whereas the degradation of EE2 (10 mg/L) under similar conditions was 98% after seven days of incubation. The kinetics of EE2 and E2 degradation fitted well with the first-order reaction rate. FTIR analysis revealed the involvement of functional groups like C = O, C-C, C-OH during the degradation process. The metabolites generated during degradation of EE2 and E2 were identified using HRAMS and a plausible pathway was elucidated. It was observed that metabolism of both E2 and EE2 proceeded with the formation of estrone, which was then hydroxylated to 4-hydroxy estrone, followed by ring opening at the C4-C5 position, and was further metabolized by the 4,5 seco pathway leading to the formation of 3-(7a-methyl-1,5-dioxooctahydro-1H-inden-4-yl) propanoic acid (HIP). It is the first report on the complete pathway of EE2 and E2 degradation in Enterobacter sp. strain BHUBP7. Moreover, the formation of Reactive Oxygen Species (ROS) during the degradation of EE2 and E2 was observed. It was concluded that both hormones elicited the generation of oxidative stress in the bacterium during the degradation process.


Asunto(s)
Estradiol , Contaminantes Químicos del Agua , Humanos , Estradiol/análisis , Estradiol/metabolismo , Estrona/análisis , Estrona/metabolismo , Etinilestradiol/análisis , Etinilestradiol/metabolismo , Bacterias/metabolismo , India , Contaminantes Químicos del Agua/metabolismo
12.
F S Sci ; 4(3): 219-228, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37142054

RESUMEN

OBJECTIVE: To study the relationship between the steroid concentration in the endometrium, in serum, and the gene expression level of steroid-metabolizing enzymes in the context of endometrial receptivity in in vitro fertilization (IVF) patients. DESIGN: Case-control study of 40 IVF patients recruited in the SCRaTCH study (NTR5342), a randomized controlled trial investigating pregnancy outcome after "endometrial scratching." Endometrial biopsies and serum were obtained from patients with a first failed IVF cycle randomized to the endometrial scratch in the midluteal phase of the natural cycle before the next fresh embryo transfer during the second IVF cycle. SETTING: University hopsital. PATIENTS: Twenty women with clinical pregnancy were compared with 20 women who did not conceive after fresh embryo transfer. Cases and controls were matched for primary vs. secondary infertility, embryo quality, and age. INTERVENTION: None. MAIN OUTCOME MEASURE(S): Steroid concentrations in endometrial tissue homogenates and serum were measured with liquid chromatography-mass spectrometry. The endometrial transcriptome was profiled by RNA-sequencing, followed by principal component analysis and differential expression analysis. False discovery rate-adjusted and log-fold change >|0.5| were selected as the threshold for differentially expressed genes. RESULT(S): Estrogen levels were comparable in both serum (n = 16) and endometrium (n = 40). Androgens and 17-hydroxyprogesterone were higher in serum than that in endometrium. Although steroid levels did not vary between pregnant and nonpregnant groups, subgroup analysis of primary women with infertility showed a significantly lower estrone concentration and estrone:androstenedione ratio in serum of the pregnant group (n = 5) compared with the nonpregnant group (n = 2). Expression of 34 out of 46 genes encoding the enzymes controlling the local steroid metabolism was detected, and estrogen receptor ß gene was differentially expressed between pregnant and nonpregnant women. When only the primary infertile group was considered, 28 genes were differentially expressed between pregnant and nonpregnant women, including HSD11B2, that catalyzes the conversion of cortisol into cortisone. CONCLUSION(S): Steroidomic and transcriptomic analyses show that steroid concentrations are regulated by the local metabolism in the endometrium. Although no differences were found in endometrial steroid concentration in the pregnant and nonpregnant IVF patients, primary women with infertility showed deviations in steroid levels and gene expression, indicating that a more homogeneous patient group is required to uncover the exact role of steroid metabolism in endometrial receptivity. CLINICAL TRIAL REGISTRATION NUMBER: The study was registered in the Dutch trial registry (www.trialregister.nl), registration number NL5193/NTR5342, available at https://trialsearch.who.int/Trial2.aspx?TrialID=NTR6687. The date of registration is July 31, 2015. The first enrollment is on January 1, 2016.


Asunto(s)
Infertilidad , Transcriptoma , Embarazo , Humanos , Femenino , Índice de Embarazo , Estrona/metabolismo , Estudios de Casos y Controles , Fertilización In Vitro/métodos , Endometrio , Infertilidad/metabolismo
13.
Environ Sci Technol ; 57(9): 3794-3803, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36800546

RESUMEN

Given concerns about potential toxicological hazards of the thousands of data-poor per- and polyfluorinated alkyl substances (PFAS) currently in commerce and detected in the environment, tiered testing strategies that employ high-throughput in vitro screening as an initial testing tier have been implemented. The present study evaluated the effectiveness of previous in vitro screening for identifying PFAS capable, or incapable, of inducing estrogenic responses in fish exposed in vivo. Fathead minnows (Pimephales promelas) were exposed for 96 h to five PFAS (perfluorooctanoic acid [PFOA]; 1H,1H,8H,8H-perfluorooctane-1,8-diol [FC8-diol]; 1H,1H,10H,10H-perfluorodecane-1,10-diol [FC10-diol]; 1H,1H,8H,8H-perfluoro-3,6-dioxaoctane-1,8-diol [FC8-DOD]; and perfluoro-2-methyl-3-oxahexanoic acid [HFPO-DA]) that showed varying levels of in vitro estrogenic potency. In agreement with in vitro screening results, exposure to FC8-diol, FC10-diol, and FC8-DOD caused concentration-dependent increases in the expression of transcript coding for vitellogenin and estrogen receptor alpha and reduced expression of insulin-like growth factor and apolipoprotein eb. Once differences in bioconcentration were accounted for, the rank order of potency in vivo matched that determined in vitro. These results provide a screening level benchmark for worst-case estimates of potential estrogenic hazards of PFAS and a basis for identifying structurally similar PFAS to scrutinize for putative estrogenic activity.


Asunto(s)
Ácidos Alcanesulfónicos , Cyprinidae , Fluorocarburos , Animales , Estrógenos/metabolismo , Estrona/metabolismo , Ácidos Alcanesulfónicos/metabolismo
14.
Environ Sci Technol ; 57(8): 3280-3290, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36795899

RESUMEN

Bisphenol 4-[1-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexyl] phenol (BPTMC), as a substitute for bisphenol A, has been detected in environments. However, the ecotoxicological data of BPTMC are extremely scarce. Here, the lethality, developmental toxicity, locomotor behavior, and estrogenic activity of BPTMC at different concentrations (0.25-2000 µg/L) in marine medaka (Oryzias melastigma) embryos were examined. In addition, the in silico binding potentials of O. melastigma estrogen receptors (omEsrs) with BPTMC were assessed by docking study. Low-concentration BPTMC exposure (including an environmentally relevant concentration, 0.25 µg/L) resulted in stimulating effects, including hatching rate, heart rate, malformation rate, and swimming velocity. However, elevated concentrations of BPTMC led to an inflammatory response, changed heart rate and swimming velocity in the embryos and larvae. In the meantime, BPTMC (including 0.25 µg/L) altered the concentrations of estrogen receptor, vitellogenin, and endogenous 17 ß-estradiol as well as the transcriptional levels of estrogen-responsive genes in the embryos or/and larvae. Furthermore, elaborate tertiary structures of omEsrs were built by ab initio modeling, and BPTMC exerted potent binding potential with three omEsrs with -47.23, -49.23, and -50.30 kJ/mol for Esr1, Esr2a, and Esr2b, respectively. This work suggests that BPTMC has potent toxicity and estrogenic effects in O. melastigma.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Oryzias/fisiología , Estrona/metabolismo , Estrógenos/metabolismo , Fenoles/toxicidad , Receptores de Estrógenos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
15.
Water Res ; 230: 119570, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621273

RESUMEN

The occurrence and fate of 17ß-estradiol (E2) in natural water have gained extensive attention owing to its high ecotoxic risk to wildlife. Dissolved organic matter (DOM) is a ubiquitous water constituent and contributes significantly to E2 removal, although the reaction mechanism is rarely clarified. The present study aims to investigate E2 transformation in water containing fresh or aged DOM surrogates at environmentally relevant concentrations in the dark. Experiments along with radical probes of benzene and furfuryl alcohol reveal that reactive radicals, particularly hydroxyl radical (·OH), formed non-photochemically at higher concentrations in aged DOM than in fresh DOM. The contribution of ·OH in E2 removal is indicated by the decreases in the removal of radical probes in the presence of E2; moreover, E2 removal is inhibited in the presence of radical scavengers. The dose-dependent inhibitive effect of substrate concentrations, including E2 and coexistent propylparaben, shows that the radical concentration is a limiting factor for E2 removal, which could be enhanced by increasing DOM concentration, dissolved oxygen, and light supply. As the main byproduct, estrone (E1) is persistent in the current DOM water in the dark, but it can be easily photodegraded when exposed to light. Theoretical analysis reveals that the initial step is ·OH-initiated H- abstraction on the hydroxyl group in the cyclopentane ring of E2. The formed singlet excited state of E2 undergoes further intramolecular rearrangement and oxidative dehydrogenation to generate E1 and the hydroperoxy radical (·HO2). Considering the universal occurrence of E2 in DOM-rich aquatic matrices, the present findings have special implications for the biogeochemical cycle and risk assessment of this pollutant in natural aquatic environments, particularly those beyond the photic zone.


Asunto(s)
Estrona , Contaminantes Químicos del Agua , Estrona/metabolismo , Materia Orgánica Disuelta , Radical Hidroxilo/química , Contaminantes Químicos del Agua/química , Estradiol/metabolismo , Agua/química
16.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36674737

RESUMEN

In general, the risk of being diagnosed with cancer increases with age; however, the development of estrogen-receptor-positive (ER+) cancer types in women are more closely related to menopausal status than age. In fact, the general risk factors for cancer development, such as obesity-induced inflammation, show differences in their association with ER+ cancer risk in pre- and postmenopausal women. Here, we tested the role of the principal estrogens in the bloodstream before and after menopause, estradiol (E2) and estrone (E1), respectively, on inflammation, epithelial-to-mesenchymal transition (EMT) and cancer stem cell enrichment in the human ER+ cervical cancer cell line HeLa. Our results demonstrate that E1, contrary to E2, is pro-inflammatory, increases embryonic stem-transcription factors (ES-TFs) expression and induces EMT in ER+ HeLa cells. Moreover, we observed that high intratumoural expression levels of 17ß-Hydroxysteroid dehydrogenase (HSD17B) isoforms involved in E1 synthesis is a poor prognosis factor, while overexpression of E2-synthetizing HSD17B isoforms is associated with a better outcome, for patients diagnosed with ER+ ovarian and uterine corpus carcinomas. This work demonstrates that E1 and E2 have different biological functions in ER+ gynaecologic cancers. These results open a new line of research in the study of ER+ cancer subtypes, highlighting the potential key oncogenic role of E1 and HSD17B E1-synthesizing enzymes in the development and progression of these diseases.


Asunto(s)
Estrona , Neoplasias , Humanos , Femenino , Estrona/metabolismo , Estradiol/metabolismo , FN-kappa B , Células HeLa , Inflamación
17.
Environ Toxicol Pharmacol ; 98: 104058, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36596390

RESUMEN

Estrone (E1) is a common environmental contaminant found in rivers and streams due to the farming of animals, such as swine and cattle. Our study evaluated the effects of chronic E1 exposure at environmentally relevant concentrations on spermatogenesis and the semen quality of zebrafish (Danio rerio). We exposed the fish to E1 at concentrations of 20, 200, and 2000 ng/L diluted in 0.001% ethanol (v/v) for 49 days. There were two control groups: one was exposed to water only and the other to ethanol at the same concentration used in the E1 groups. Following exposure, we analyzed the proportion of testicular cell types and other components (%), rate of cell proliferation and death, and sex steroid concentrations. Furthermore, we analyzed the expression of insulin-like growth factor 1 (IGF1), IGF2, IGF1 receptor (IGF1R), and inducible nitric oxide synthase and assessed the semen quality. E1 exposure increased spermatogonia, spermatids, Sertoli cells, Leydig cells, and the proportion of inflammatory infiltrate but decreased the spermatozoa amount. These changes were reflected by reductions in the gonadosomatic index and levels of 11-ketotestosterone in the testes. On the other hand, E1 exposure increased testicular estradiol, IGF1R expression, and nitric oxide production. After an evaluation using a computer-assisted sperm analysis (CASA) system, we observed reduced progressive motility, curvilinear velocity, and beat cross frequency of 20 and 2000 ng/L E1 groups. Our findings support that E1 causes deleterious effects on the testicular function and semen quality of D. rerio even at environmental concentrations. Thus, E1 concentrations should be monitored in surface waters for the purposes of fish conservation.


Asunto(s)
Estrona , Pez Cebra , Masculino , Animales , Porcinos , Bovinos , Pez Cebra/fisiología , Estrona/metabolismo , Estrona/farmacología , Análisis de Semen , Semen , Espermatozoides , Espermatogénesis , Testículo
19.
J Steroid Biochem Mol Biol ; 227: 106228, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36427797

RESUMEN

Human placental estrone (E1)/dehydroepiandrosterone (DHEA) sulfatase (human placental steroid sulfatase; hSTS) is an integral membrane protein of the endoplasmic reticulum. This Ca2+-dependent enzyme catalyzes the hydrolysis of sulfate esters of E1 and DHEA to yield the respective unconjugated steroids, which then act as precursors for the biosynthesis of 17ß-estradiol (E2) and dihydrotestosterone (DHT), respectively, the most potent forms of estrogens and androgens. hSTS is a key enzyme for the local production of E2 and DHT in the breast and the prostate. The enzyme is known to be responsible for maintaining high levels of estrogens in the breast tumor cells. The crystal structure of hSTS purified from human placenta has previously been reported at 2.6 Å resolution. Here we present the structure of hSTS determined at the superior 2.0 Å resolution bringing new clarity to the atomic architecture of the active site. The molecular basis of catalysis and steroid-protein interaction are revisited in light of the new data. We also reexamine the enzyme's quaternary association and its implication on the membrane integration. A secondary ligand binding pocket at the intermolecular interface and adjacent to the active site access channel, buried into the gill of the mushroom-shaped molecule, has been identified. Its role as well as that of a phosphate ion bound to an exposed histidine side chain are examined from the structure-function perspective. Higher resolution data also aids in the tracing of an important loop missing in the previous structure.


Asunto(s)
Placenta , Esteril-Sulfatasa , Masculino , Humanos , Femenino , Embarazo , Placenta/metabolismo , Ligandos , Sulfatasas , Estrona/metabolismo , Estrógenos , Dihidrotestosterona/metabolismo , Deshidroepiandrosterona/metabolismo , Catálisis
20.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36430640

RESUMEN

The molecular mechanisms that drive the granulosa cells' (GC) differentiation into a more estrogenic phenotype during follicular divergence and establishment of follicle dominance have not been completely elucidated. The main Hippo signaling effector, YAP, has, however, emerged as a potential key player to explain such complex processes. Studies using rat and bovine GC demonstrate that, in conditions where the expression of the classic YAP-TEAD target gene tissue growth factor (CTGF) is augmented, CYP19A1 expression and activity and, consequently, estradiol (E2) secretion are reduced. These findings led us to hypothesize that, during ovarian follicular divergence in cattle, FSH downregulates YAP-TEAD-dependent transcriptional activity in GC to allow the future dominant follicle to exert its augmented estrogenic capacity. To address this, we performed a series of experiments employing distinct bovine models. Our in vitro and ex vivo experiments indicated that indeed FSH downregulates, in a concentration-dependent manner, mRNA levels not only for CTGF but also for the other classic YAP-TEAD transcriptional target genes ANKRD1 and CYR61 by a mechanism that involves increased YAP phosphorylation. To better elucidate the functional importance of such FSH-induced YAP activity regulation, we then cultured GC in the presence of verteporfin (VP) or peptide 17 (P17), two pharmacological inhibitors known to interfere with YAP binding to TEADs. The results showed that both VP and P17 increased CYP19A1 basal mRNA levels in a concentration-dependent manner. Most interestingly, by using GC samples obtained in vivo from dominant vs. subordinate follicles, we found that mRNA levels for CTGF, CYR61, and ANKRD1 are higher in subordinate follicles following the follicular divergence. Taken together, our novel results demonstrate that YAP transcriptional activity is regulated in bovine granulosa cells to allow the increased estrogenic capacity of the selected dominant follicle.


Asunto(s)
Hormona Folículo Estimulante , Folículo Ovárico , Animales , Bovinos/genética , Bovinos/metabolismo , Femenino , Ratas , Estrona/metabolismo , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Células de la Granulosa/metabolismo , Folículo Ovárico/metabolismo , ARN Mensajero/metabolismo , Verteporfina , Factores de Transcripción de Dominio TEA/metabolismo , Proteínas Señalizadoras YAP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...